

ECOINNOVACIÓN EN EL SECTOR QUÍMICO DE LA COMUNITAT VALENCIANA

Presentación de retos del Sector Químico de la CV

Lucía Piñeiro, Agente de Innovación en QUIMACOVA

RETO 1. DISEÑO PRECISO DE BIOFERTILIZANTES PARA MAXIMIZAR SIMBIOSIS BENEFICIOSAS.

La eficacia de los biofertilizantes depende de su capacidad para promover simbiosis beneficiosas entre microorganismos y plantas.

NECESIDAD A RESOLVER:

Comprender estas interacciones a nivel genómico, molecular y celular para diseñar biofertilizantes altamente efectivos que mejoren la resistencia de las plantas a enfermedades y estrés ambiental.

RETO 1. DISEÑO PRECISO DE BIOFERTILIZANTES PARA MAXIMIZAR SIMBIOSIS BENEFICIOSAS. **POSIBLES SOLUCIONES.**

1. PERFILADO GENÓMICO Y TRANSCRIPTÓMICO

Identificar genes involucrados en la simbiosis beneficiosa entre los microorganismos y las plantas y/o genes de las plantas que se expresan de forma diferente en presencia/ausencia de microorganismos.

2. SECUENCIACIÓN DE MICROBIOMAS DEL SUELO

Técnicas de secuenciación avanzada de ADN para conocer la diversidad de m. o. y la interacción entre estos y con el medioambiente en un entorno particular (microbioma).

3. EDICIÓN GENÉTICA

Modificar el ADN de m. o. para optimizar su relación de simbiosis con la planta y conseguir un aumento en el rendimiento de los cultivos.

4. METABOLÓMICA

Identificar y cuantificar los metabolitos producidos por las plantas y los microorganismos cruciales **en las simbiosis beneficiosas**.

RETO 1. DISEÑO PRECISO DE BIOFERTILIZANTES PARA MAXIMIZAR SIMBIOSIS BENEFICIOSAS. **POSIBLES SOLUCIONES.**

5. MICROSCOPÍA AVANZADA

Imágenes de las interacciones plantas — microorganismos **a nivel celular para comprender** cómo funcionan **las simbiosis beneficiosas**.

6. SIMULACIÓN POR MODELOS COMPUTACIONALES

Simulación de las interacciones bajo diferentes condiciones con alta precisión en la predicción de resultados.

7. MANIPULACIÓN DE LA SEÑALIZACIÓN QUÍMICA

Modificar la señalización química para aumentar la absorción de nutrientes y la resistencia ante patógenos logrando promover el crecimiento de las plantas.

RETO 2. MEJORA DE LA VIABILIDAD Y SUPERVIVENCIA DE MICROORGANISMOS EN BIOFERTILIZANTES A LO LARGO DE SU CICLO DE VIDA (PRODUCCIÓN, ENVASADO, APLICACIÓN).

La eficacia de los biofertilizantes está ligada a la viabilidad y supervivencia de los m. o. que contienen.

Las condiciones de almacenamiento y aplicación pueden afectar su capacidad para prosperar en el suelo.

NECESIDAD A RESOLVER:

Mejorar significativamente la viabilidad de los microorganismos a lo largo de todo el proceso: desde la producción hasta la aplicación en el campo.

RETO 2. MEJORA DE LA VIABILIDAD Y SUPERVIVENCIA DE MICROORGANISMOS EN BIOFERTILIZANTES A LO LARGO DE SU CICLO DE VIDA (PRODUCCIÓN, ENVASADO, APLICACIÓN). POSIBLES SOLUCIONES.

1. RESISTENCIA NATURAL DE LAS CEPAS

Identificar cepas microbianas naturalmente resistentes a condiciones estresantes y seleccionar aquellas que mantengan su viabilidad durante un almacenamiento prolongado.

2. ESTABILIDAD DE LOS BIOPRODUCTOS

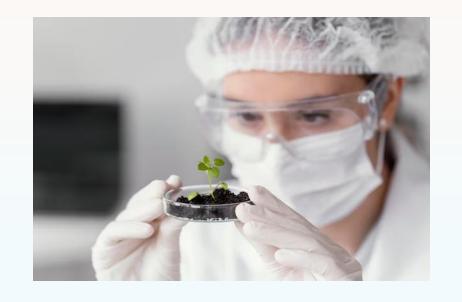
Técnicas de estabilización que prolonguen la vida útil y mantengan la viabilidad de los microorganismos en diferentes condiciones de almacenamiento.

3. FORMULACIONES PROTECTORAS INNOVADORAS

Formulaciones que protejan a los microorganismos de factores estresantes y les proporcionen nutrientes esenciales para su supervivencia.

RETO 2. MEJORA DE LA VIABILIDAD Y SUPERVIVENCIA DE MICROORGANISMOS EN BIOFERTILIZANTES A LO LARGO DE SU CICLO DE VIDA (PRODUCCIÓN, ENVASADO, APLICACIÓN). POSIBLES SOLUCIONES.

4. EFICIENCIA EN LA ENCAPSULACIÓN


Tecnología de encapsulación eficiente que proporcione una barrera efectiva contra cambios de pH, temperatura y luz que permita una liberación controlada y sostenida.

5. BIOPOLÍMEROS SOSTENIBLES

Biopolímeros sostenibles que sirvan como recubrimientos protectores para los microorganismos, ofreciendo una alternativa ecológica y eficaz.

6. ESTUDIOS DE INTERACCIONES MICROBIANAS

Estudio de las interacciones entre los microorganismos y otros componentes de las formulaciones para garantizar la compatibilidad y estabilidad a largo plazo.

RETO 2. MEJORA DE LA VIABILIDAD Y SUPERVIVENCIA DE MICROORGANISMOS EN BIOFERTILIZANTES A LO LARGO DE SU CICLO DE VIDA (PRODUCCIÓN, ENVASADO, APLICACIÓN). POSIBLES SOLUCIONES.

7. PROCESOS DE PRODUCCIÓN OPTIMIZADOS

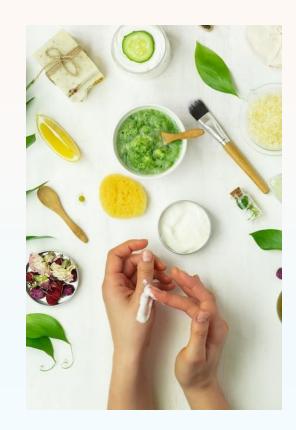
Optimización de los procesos de **producción de biofertilizantes para garantizar la calidad y viabilidad de los microorganismos**, minimizando el estrés durante la producción.

8. CONTROL AMBIENTAL EN EL ALMACENAMIENTO

Identificación de las variables ambientales que afectan a la estabilidad de biofertilizantes y que permitan desarrollar sistemas de control ambiental para mantener unas condiciones óptimas durante el almacenamiento.

9. SENSORES DE VIABILIDAD EN TIEMPO REAL

Implementar sensores en tiempo real que monitoreen la viabilidad de los microorganismos, permitiendo ajustes inmediatos basados en condiciones cambiantes durante el almacenamiento y la aplicación.

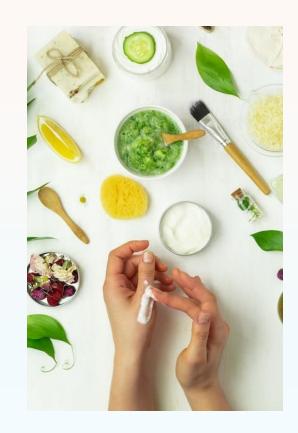

RETO 3. a) NUEVOS INGREDIENTES ACTIVOS SOSTENIBLES PARA COSMÉTICA OBTENIDOS A PARTIR DE LA VALORIZACIÓN DE RESIDUOS.

Los residuos alimentarios y agrícolas pueden utilizarse para obtener ingredientes activos para productos cosméticos contribuyendo a su aprovechamiento.

NECESIDAD A RESOLVER:

Obtención de ingredientes activos para cosmética y cuidado personal a partir de residuos de la industria alimentaria y agrícola.

- Residuo: estabilidad de suministro, volumen adecuado.
- **Proceso:** Escalable a nivel industrial de forma sostenible.
- Ingrediente:
 - Propiedades superiores a sus homólogos tradicionales o similares con un costo menor.
 - Compatible con los ingredientes básicos de la fórmula.



RETO 3. a) NUEVOS INGREDIENTES ACTIVOS SOSTENIBLES PARA COSMÉTICA OBTENIDOS A PARTIR DE LA VALORIZACIÓN DE RESIDUOS.

POSIBLES SOLUCIONES:

- 1. Técnica de extracción selectivas y eficientes de compuestos bioactivos de interés para el sector cosmético (ej. la extracción con fluidos supercríticos, la extracción asistida por ultrasonidos o la extracción enzimática).
- 2. Técnicas biotecnológicas para potenciar y mejorar la obtención de los compuestos bioactivos de los residuos agrícolas (la ingeniería genética de microorganismos y la fermentación).

RETO 3. b) NUEVAS PROPUESTAS DE MICROENCAPSULACIÓN CON POLÍMEROS BIODEGRADABLES Y ESTRATEGIAS DE LIBERACIÓN CONTROLADA.

La liberación controlada de compuestos activos mejora su eficacia al prolongar su vida útil y asegurar su disponibilidad en el momento y lugar adecuados.

NECESIDAD A RESOLVER:

- Encapsulación de ingredientes activos en polímeros biodegradables.
- Liberación controlada según estímulos específicos (pH, temperatura o luz).
 - **Estabilidad de los ingredientes encapsulados** (mínimo 12 meses bajo distintas condiciones de almacenamiento).
 - **Liberación controlada durante al menos 8 horas** en condiciones de aplicación.

RETO 3. b) NUEVAS PROPUESTAS DE MICROENCAPSULACIÓN CON POLÍMEROS BIODEGRADABLES Y ESTRATEGIAS DE LIBERACIÓN CONTROLADA.

POSIBLES SOLUCIONES:

- 1. Investigación y optimización de polímeros biodegradables como quitosano, alginato, almidón modificado u otros derivados de fuentes renovables para garantizar su compatibilidad con ingredientes cosméticos.
- 2. Tecnologías de microencapsulación avanzadas: la coacervación, la extrusión, la pulverización y la gelificación iónica adaptadas para trabajar con polímeros biodegradables.

RETO 3. c) COMPATIBILIDAD Y EFICACIA EN PRODUCTOS COSMÉTICOS.

La industria cosmética debe **garantizar la compatibilidad y eficacia de** sus **productos antes de su lanzamiento** al mercado.

Los compuestos activos pueden interactuar con otros ingredientes de la fórmula (reducción de la eficacia o reacciones adversas).

La encapsulación de compuestos activos puede afectar su eficacia.

NECESIDAD A RESOLVER:

Facilitar / acelerar el proceso de evaluación de los ingredientes activos para ahorrar tiempo y recursos.

- Identificar posibles interacciones entre los ingredientes de la fórmula.
- Medir la eficacia de los ingredientes activos encapsulados.

POSIBLES SOLUCIONES:

 Tecnologías analíticas avanzadas: espectroscopía, microscopía electrónica, análisis de imagen y técnicas de evaluación de estabilidad para verificar la eficacia y la estabilidad de los ingredientes encapsulados.

RETO 3. c) COMPATIBILIDAD Y EFICACIA EN PRODUCTOS COSMÉTICOS.

NECESIDAD A RESOLVER:

En algunos contextos, no hay concordancia entre los resultados de las pruebas in vitro e in vivo.

Evitar pruebas sobre seres humanos.

POSIBLE SOLUCIÓN:

Nuevos modelos válidos para realizar pruebas de seguridad y medir efectos relevantes para la piel (la absorción de ingredientes, la irritación, la sensibilidad, la respuesta a agentes alérgenos y otros).

Precisión, rapidez, rentabilidad.

RETO 4. INNOVACIÓN EN DESINFECTANTES: AVANZANDO HACIA SOLUCIONES SOSTENIBLES Y MULTIFUNCIONALES

Los consumidores buscan cada vez más productos respetuosos con el medio ambiente.

NECESIDAD A RESOLVER:

Desinfectantes sostenibles basados ingredientes naturales, en biodegradables de baja o ninguna toxicidad para el medio ambiente.

Soluciones de limpieza/desinfección multifuncionales:

MENOS	es	MÁS
TiempoDineroImpactoambiental		omodidad ficacia

RETO 4. INNOVACIÓN EN DESINFECTANTES: AVANZANDO HACIA SOLUCIONES SOSTENIBLES Y MULTIFUNCIONALES. POSIBLES SOLUCIONES.

- Investigación sobre la resistencia microbiana y estrategias para prevenir su desarrollo a lo largo del tiempo.
- Innovación en materias primas sostenibles:
 - Aceites esenciales
 - Extractos vegetales
 - Compuestos derivados de microorganismos modificados genéticamente, que contienen sus enzimas o péptidos antimicrobianos.
 - Nanomateriales (gran área superficial en relación con su volumen, mayor penetración, mayor estabilidad).
 - Compuestos halógenos (mayor sostenibilidad y seguridad).
 - Bacteriófagos:
 - Compatibilidad fórmula.
 - Garantizar su viabilidad (la estabilidad y la eficacia del producto).
 - Amplio espectro de actuación (amplia variedad de cepas, distintos soportes).
 - Estrategias para minimizar desarrollo de resistencia bacteriana.

RETO 4. INNOVACIÓN EN DESINFECTANTES: AVANZANDO HACIA SOLUCIONES SOSTENIBLES Y MULTIFUNCIONALES. POSIBLES SOLUCIONES.

- **1. Tecnologías de liberación controlada:** Prolongan la eficacia del producto con un menor impacto medioambiental.
- **2. Soluciones fotocatalíticas:** formulaciones sostenibles y eficaces a base de agentes fotocatalíticos compatibles, duraderos y rentables.

3. Indicadores:

- De las cantidades de aplicación.
- **De las condiciones de suciedad/limpieza** para que el usuario **tome decisiones** informadas (indicadores colorimétricos ausencia/presencia microorganismos, sensores residuos desinfección).

ECOINNOVACIÓN EN EL SECTOR QUÍMICO DE LA COMUNITAT VALENCIANA

Presentación de retos del Sector Químico de la CV

GRACIAS POR SU ATENCIÓN

Lucía Piñeiro

Agente de Innovación en QUIMACOVA

innoquim@quimacova.org

647 798 329